Transforming from individual to collaborative network science

Scott L. Collins

Sevilleta LTER Department of Biology University of New Mexico

Outline of the presentation:

- •Why collaborate
- Costs and benefits
- •Development of "Big Science" in ecology
- •LTER and NEON
- Coupled natural-human systems

TOPICS FOR DISCUSSION:

- 1. Culture of collaboration
 - Collective identity
 - Drivers of collaboration
- 2. Governance
- 3. Data Sharing
 - Authorship
 - Ethics

4. Strategies for management

- Structure
- Evaluation
- Information management
- Staff
- 5. Funding
 - Internal
 - External

SCIENTISTS DISCOVER NEW ELEMENT

Oxford University researchers have discovered the heaviest element yet known to science. The new element, Universitium (symbol=Uv), has one neutron, 25 assistant neutrons, 88 deputy neutrons and 198 assistant deputy neutrons, giving it an atomic mass of 312. These 312 particles are held together by forces called morons, which are surrounded by vast quantities of lepton-like particles called pillocks.

Since Universitium has no electrons, it is inert. However, it can be detected, because it impedes every reaction with which it comes into contact.

Universitium has a normal half-life of 2 to 6 years. It does not decay, but instead undergoes a reorganization in which a portion of the assistant neutrons and deputy neutrons exchange places. In fact, Universitium's mass will actually increase over time, since each reorganisation will cause more morons to become neutrons, forming isodopes.

Funding agencies:

Proactive ◄ ► Reactive Large vs. small grants Funding rates Definition of "interdisciplinary"

Academic culture:

Emphasis on funding – low vs. high risk Departmental and college structure Research culture for tenure and promotion Definition of "interdisciplinary"

Ecological grand challenges:

Coupled human-natural systems:

- Invasive species
- •Climate change
- •Altered biogeochemical cycles
- •Ecology of infectious disease
- Loss of biodiversity
- •Genetically modified organisms
- •Restoration and designer ecosystems

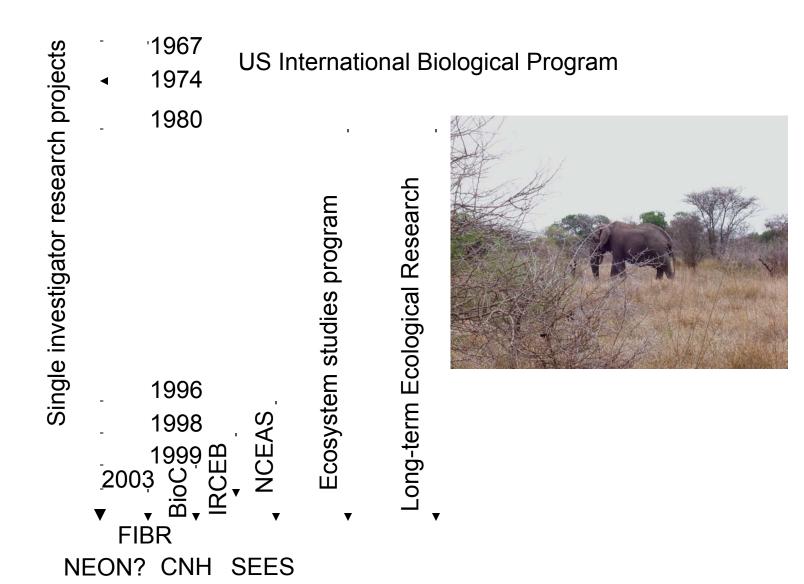
nature

3 July 2003 Volume 424 Issue no 6944

Who'd want to work in a team?

Biologists and their institutions are increasingly confronted by the challenges of working in major collaborations that other disciplines have already addressed. A gathering last week showed how much further there is to go.

EDITORIAL


Multiple Authors, Multiple Problems

- •Time demands
- Authorship
- Intellectual property rights
- Publication credits
- •Credit (tenure and promotion)
- •Sharing the blame fraud

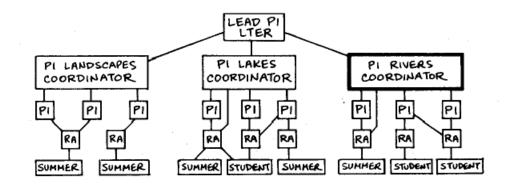
A team is a team, and the members should share the credit or the blame.

Drivers of collaboration in ecology

1950 National Science Foundation

B. Peterson 1993

MODEL SIZE CLASS . GRADUATE STUDENT WORKING ALONE Ph.D. ٠ ON A Ph.D. THESIS STUDENT SIZE CLASS POSTDOCTORAL STUDENT ASSISTED BY AN POSTDOC 2 UNDERGRADUATE RESEARCH ASSISTANT (RA) RA SIZE CLASS ASSISTANT SCIENTIST/PROFESSOR WORKING ON ASST. SCIENTIST 3 AN NSF GRANT WITH TWO RESEARCH ASSISTANTS (RA'S) RA RA SMALL SCALE COLLABORATIVE PROJECT: SIZE CLASS LEAD ASSISTANT SCIENTIST/ PROFESSOR AS A PI 4 CO-PI. WORKING ON A 3 OR 4 PI. PROJECT WITH 2 OR 3 RA'S. RA

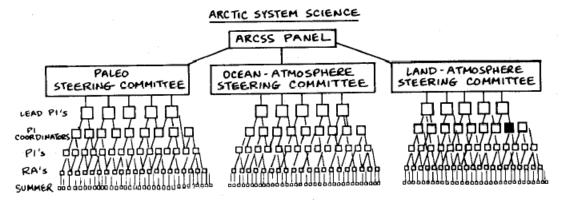

SIZE CLASS

LTER OR LMER.

5

ASSOCIATE OR SENIOR SCIENTIST/ PROFESSOR WORKING AS COORDINATOR OF A PORTION OF A 12 P.I. PROJECT INVOLVING LAKES, RIVERS AND LANDSCAPE COMPONENTS. TOTAL PERSONNEL INVOLVED : ABOUT 25-50.

SIZE CLASSES 1-4 EXIST AS NESTED WITHIN MODEL 5. OR AS SEMI-INDEPENDENT PROJECTS.


B. Peterson 1993

SIZE CLASS

GLOBAL CHANGE RESEARCH.

"ARCTIC SYSTEM SCIENCES (ARCSS)". (ANOTHER EXAMPLE : LTER NETWORK)

SENIOR SCIENTIST WORKING AS COORDINATOR/RESEARCHER TO DEVELOP A SYSTEM OF MONITORING, EXPERIMENTATION AND MODELING TO PREDICT FUTURE STATES OF THE ARCTIC SYSTEM. TOTAL PROGRAM : ~\$15 MILLION/YEAR. TOTAL PERSONNEL: ~300-500

SIZE CLASS EARTH SYSTEM SCIENCE. 7 : INTEGRATE ARCSS WITH OTHER GLOBA

• INTEGRATE ARCSS WITH OTHER GLOBAL CHANGE STUDIES. TOTAL PERSONNEL PROBABLY ~ 5000-15,000 GLOBALLY.

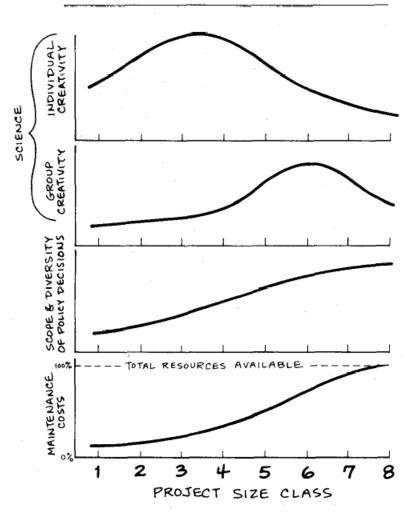
TABLE 1. Differences between individual and collaborative group research.

Group Research Requires

- 1) Less individual freedom
- 2) More planning
- 3) More administration
- 4) More data management
- 5) More funding
- 6) More continuity and predictability of funding

B. Peterson 1993

TABLE 3. Benefits and costs of a Long-Term Ecological Research project.


Benefits

- 1. A longer funding horizon
- 2. A framework of long-term monitoring and experimentation around which to focus individual projects
- The ability to address questions at the ecosystem and landscape scales that require long experiments or data sets
- 4. A well-documented data base for addressing future as-yetundefined questions

Costs

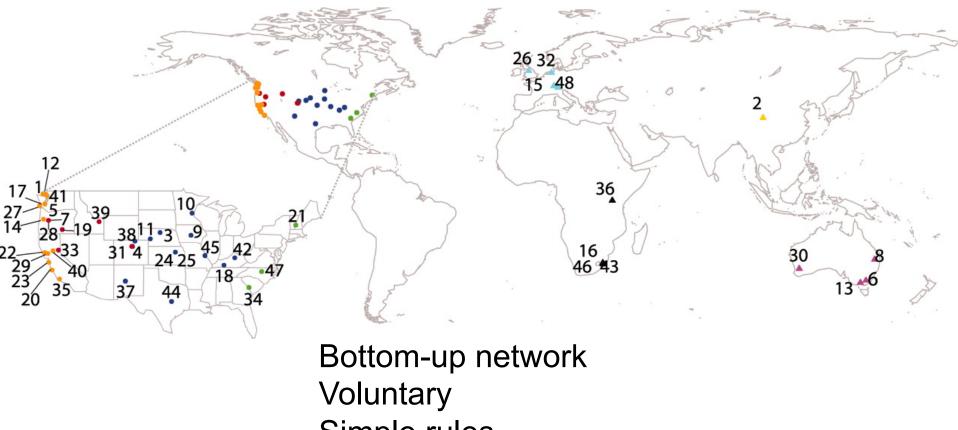
- 1. Logistics
- 2. Project meetings
- 3. Communications network
- Monitoring in five core research areas, such as primary productivity
- 5. Data base development, updating, maintenance and sharing
- 6. GIS (ARC-INFO) data base model development
- 7. Collaboration with other sites
- 8. Workshop participation
- 9. Network meeting participation
- 10. Trips to Washington
- 11. Preparation for site reviews

COSTS AND BENEFITS OF COLLABORATIVE RESEARCH

Ten fundamentals of team building

(from Likens 1997):

- 1. Brightness
- 2. Trust
- 3. Abundance of common (good) sense
- 4. Creativity and willingness to share
- 5. Appropriate training
- 6. Collective ability to make up deficiencies
 - shared experiences
- 7. Willing to give time to the team
- 8. Personality
 - Ability and willingness to listen
 - Enjoy working with others
 - Curiosity and interest
 - Open minded
- 9. Serendipity
- 10. Liking each other
- 11. LUCK



The challenges:

- 1. Intellectual contribution: authorship
- 2. Intellectual contribution: coursework
- 3. Intellectual contribution: funding
 - Ethics workshop and policy
- 4. Evaluation of participants
- 5. Data sharing
 - Change in academic culture
- 6. Data management
- 7. Long-term support
- 8. Center Evaluation

The Nutrient Network (NutNet)

Voluntary Simple rules Inexpensive Data management plan Data sharing policy Author policy

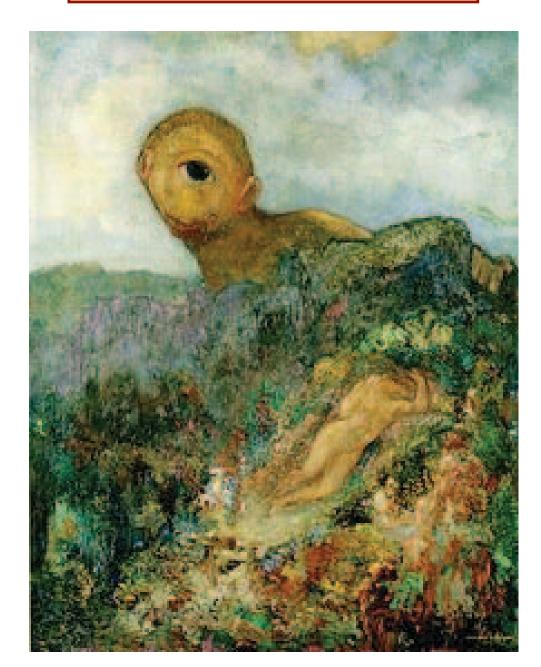
Collaboration has benefits.....

REPORTS

Productivity Is a Poor Predictor of Science Plant Species Richness

Peter B. Adler, ¹* Eric W. Seabloom, ² Elizabeth T. Borer, ² Helmut Hillebrand, ³ Yann Hautier, ⁴ Andy Hector, ⁴ W. Stanley Harpole, ⁵ Lydia R. O'Halloran, ⁶ James B. Grace, ⁷ T. Michael Anderson, ⁸ Jonathan D. Bakker, ⁹ Lori A. Biederman, ⁵ Cynthia S. Brown, ¹⁰ Yvonne M. Buckley, ¹¹ Laura B. Calabrese, ¹² Cheng-Jin Chu, ¹³ Elsa E. Cleland, ¹⁴ Scott L. Collins, ¹¹ Kathryn L. Cottingham, ¹⁵ Michael J. Crawley, ¹⁶ Ellen I. Damschen, ¹⁷ Kendi F. Davies, ¹⁸ Nicole M. DeCrappeo, ¹⁹ Philip A. Fay, ²⁰ Jennifer Firn, ²¹ Paul Frater, ⁵ Eve I. Gasarch, ¹⁸ Daniel S. Gruner, ²² Nicole Hagenah, ^{23,24} Janneke Hille Ris Lambers, ²⁵ Hope Humphries, ¹⁸ Virginia L. Jin, ²⁶ Adam D. Kay, ²⁷ Kevin P. Kirkman, ²³ Julia A. Klein, ²⁸ Johannes M. H. Knops, ²⁹ Kimberly J. La Pierre, ²³ John G. Lambrinos, ³⁰ Wei Li, ⁵ Andrew S. MacDougall, ³¹ Rebecca L. McCulley, ³² Brett A. Melbourne, ¹⁸ Charles E. Mitchell, ³³ Joslin L. Moore, ³⁴ John W. Morgan, ³⁵ Brent Mortensen, ⁵ John L. Orrock, ¹⁷ Suzanne M. Prober, ³⁶ David A. Pyke, ¹⁹ Anita C. Risch, ³⁷ Martin Schuetz, ³⁷ Melinda D. Smith, ²⁴ Carly J. Stevens, ^{38,39} Lauren L. Sullivan, ⁵ Gang Wang, ¹³ Peter D. Wragg, ² Justin P. Wright, ⁴⁰ Louie H. Yang⁴¹

Abundance of introduced species at home predicts abundance away in herbaceous communities


POLICY FORUM

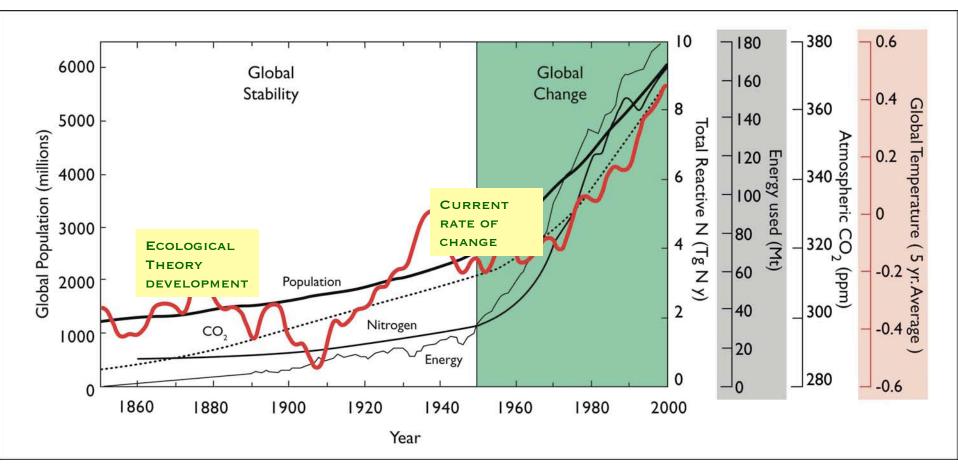
Ecology for a Crowded Planet

Margaret Palmer,^{1*} Emily Bernhardt,² Elizabeth Chornesky,³ Scott Collins,⁴ Andrew Dobson,⁵ Clifford Duke,⁶ Barry Gold,⁷ Robert Jacobson,⁸ Sharon Kingsland,⁹ Rhonda Kranz,⁶ Michael Mappin,¹⁰ M. Luisa Martinez,¹¹ Fiorenza Micheli,¹² Jennifer Morse,¹ Michael Pace,¹³ Mercedes Pascual,¹⁴ Stephen Palumbi,¹² O. J. Reichman,¹⁵ Ashley Simons,¹⁶ Alan Townsend,¹⁷ Monica Turner¹⁸

"Our future environment will largely consist of human-influenced ecosystems, managed to varying degrees, in which the natural services that humans depend on will be harder and harder to maintain. The role of science in a more sustainable future must involve an improved understanding of how to design ecological solutions through conservation, restoration and purposeful intervention of ecological systems."

The ecological cyclops

The angry ecological cyclops



"<u>Earth Stewardship</u>: Science that facilitates the active shaping of trajectories of social-ecological change to enhance ecosystem resilience and human well-being....a new cutting-edge science that blends disciplinary traditions, diverse ways of knowing, and new ways to identify scientific priorities "

Chapin et al. 2011 Ecosphere

Social-ecological presses

Press factor – variable or driver that is applied continuously at rates ranging from low to high (e.g., atmospheric nitrogen deposition, elevated CO2). Includes changes in rates (increases, decreases) relative to some historical baseline.

Smith, Knapp & Collins 2009 Ecology

LONG-TERM ECOLOGICAL RESEARCH NETWORK

•Established in 1980 •26 Sites •Network Office

LTER CORE AREAS

Net Primary Production
Organic matter cycling
Nutrient cycling
Population dynamics
Disturbance

RESEARCH PARTNERS

- •US Forest Service
- •USDA ARS
- •Fish and Wildlife Service
- •The Nature Conservancy

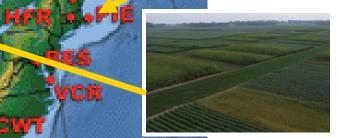
The US LTER Network

MTI

64.0

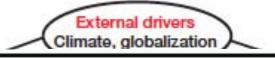
KM7

/CR


GCE

FCE

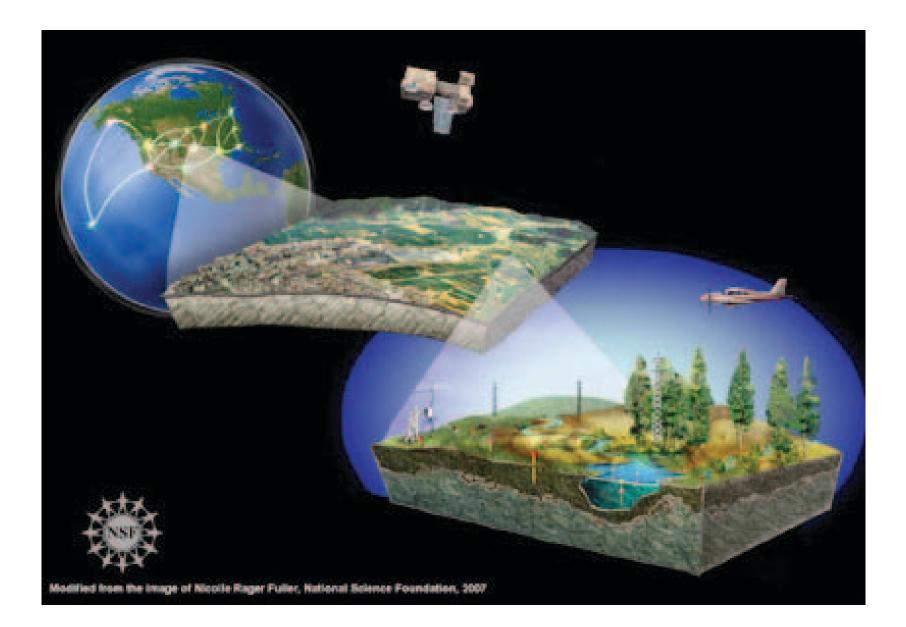
LONG-TERM ECOLOGICAL **RESEARCH NETWORK**


- •ESTABLISHED IN 1980
- •26 SITES
- •NETWORK OFFICE

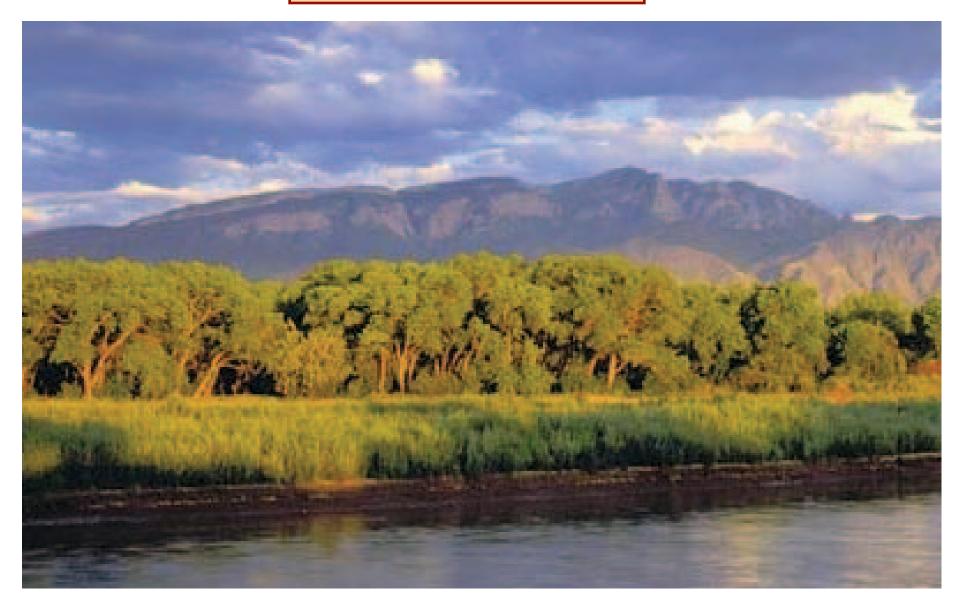
Pulse-Press Dynamics linking biophysical and social sciences through <u>ecosystem services</u>

Framework questions:

- Q1: How do long-term press disturbances and short-term pulse disturbances interact to alter ecosystem structure and function?
- Q2: How can biotic structure be both a cause and a consequence of ecological fluxes of energy and matter?
- Q3: How do altered ecosystem dynamics affect ecosystem services?
- Q4: How do changes in vital ecosystem services alter human outcomes?
- Q5: How do outcomes, such as quality of life or perceptions, affect human behavior?
- Q6: Which human actions influence the frequency, magnitude or form of press and pulse disturbance regimes across ecosystems, and what determines these human actions?



NATIONAL ECOLOGICAL OBSERVATORY NETWORK



Earth Stewardship: The Argus Initiative

"...potential solutions should consider multiple problems and sectors simultaneously through institutions at many scales rather than addressing each problem separately....."

Acknowledgements

